
 

Methods to Reduce the Amplification of Random 
Noise in the Color Processing of Imager Data 

Brent McCleary 
Pictos Technologies 

Newport Beach, California 
 
 

Abstract 

In the image processing of a digital camera system, a 
colorimetric matching transformation is implemented to 
minimize the error between the sensor output transformed 
color responses and the human vision responses. The color 
matching transform does not usually attempt to minimize 
the resulting noise of the color corrected data. The CMOS 
sensors used in embedded applications typically exhibit 
high levels of random noise and cross-talk (the loss of 
photons or electrons from a pixel to neighboring pixels). 
This results in a trade-off between color error (e.g., de-
saturated colors) and the amount of noise in the image. 
This is especially true as the size of pixels are 
progressively reduced, which leads to highly de-saturated 
(muted) images that require severe color corrections and 
have lower signal-to-noise ratios. In this paper, methods of 
color correction are presented which exploit the fact that 
the human visual system is most sensitive to color errors in 
lower spatial frequencies than in higher spatial frequencies. 
Thus more accurate (and usually more complex) color 
correction algorithms should be applied to the lower spatial 
frequency data, and less accurate (and usually simpler) 
algorithms can be applied to the higher spatial frequency 
data. Three methods are developed and analyzed which use 
segmentation of sensor data in the spatial frequency 
domain: the discrete cosine transformation (DCT), the 
discrete wavelet transformation (DWT), and a simple low 
pass/high pass filter. Metrics for noise performance, color 
accuracy, and image sharpness are provided. The novel 
approach developed in this paper is the use of variable 
complexity color corrections applied within the frequency 
transform domains. This allows the process of compressing 
image data to be used to reduce the amplification of 
uncorrelated pixel noise, while still achieving accurate 
color enhancement and maintaining image sharpness. 

Background 

Color image sensors use a layer of color filters bonded to 
the silicon in order to sample ranges of wavelengths of 
light in the visible spectrum (380nm to 740nm). Typically, 
camera systems use three-color primaries to color-match 
colors of arbitrary visible wavelengths. In order to achieve 
low cost and compact designs, many camera systems use a 

single sensor with a Bayer1 color filter array (CFA). The 
Bayer pattern (Fig. 1) is the most popular CFA, and uses a 
checkerboard pattern with alternating rows of filters that 
subsamples and mosaics the colors of the captured image. 
Since the human vision system is most sensitive to green 
luminance in defining image quality, the Bayer pattern has 
twice as many green pixels as red and blue pixels. In order 
to form a color image, an interpolation or de-mosaicing 
algorithm must be used to produce an RGB triplet at each 
pixel. 

 

Figure 1. Typical Bayer Filter Pattern 

 
A color space matrix transform (such as a 3x3 matrix 

color correction) multiplies pixel signal data from separate 
pixels together and performs a linear combination of all the 
components. The red, green, and blue data come from 
separate pixels (and are interpolated to form RGB triplets), 
which have uncorrelated random noise. Thus, the noise 
data from the pixels are also multiplied and summed. The 
resulting random noise is increased due to the uncorrelated 
noise summing up according to a square root law.2 The 
colorimetric matching transformation typically attempts to 
minimize the error between the sensor output transformed 
color responses and the human vision responses. No 
attempt is usually made to minimize the resulting noise of 
the color corrected data.  

The CMOS sensors used in embedded applications 
suffer from many types of noise while operating under 
room temperature conditions. It is usually possible for the 
image back end processor to remove most of the fixed-
pattern noise (time-invariant noise). The temporal noise 
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that CMOS sensors encounter include3: capacitive reset 
(kT/C) noise, dark current time-varying noise, Johnson 
(thermal or white) noise, and 1/f noise (frequency-
dependent). For the cost-effective CMOS active pixel 
architecture, the kT/C noise is usually the largest source of 
temporal noise. This noise is generally uncorrelated from 
pixel to pixel, thus if pixels values are summed, then the 
variances will also sum (pixels values are independent 
normal random variables). The reset field-effect transistor 
switch generates the kT/C noise, where k is Boltzmann’s 
constant, T is the temperature, and C is the capacitance of 
the attached load. As the size of the pixel photodiode is 
reduced due to the demands of embedded applications, the 
capacitance also decreases. This increases the kT/C noise, 
as well as decreasing the full-well signal level. 
Additionally, the signal itself has photon shot noise, in 
which its variance equals its mean. Smaller pixels have a 
smaller maximum signal to shot noise ratio. These effects 
reduce the sensor’s dynamic range and signal-to-noise ratio 
(SNR). Thus, the level of noise in the imager data is a 
parameter that must be addressed during the image 
processing and compression. 

The color correction of CMOS sensor images is of 
particular importance since these sensors typically exhibit 
high degrees of cross-talk. Cross-talk is the loss of 
electrons or photons from a pixel to neighboring pixels. 
There are both optical and electrical sources of cross-talk. 
Photons can pass through the CFA of one pixel at an 
oblique angle such that it is collected by an adjacent pixel, 
which has a different color filter. After photons have 
created carriers in a photodiode, they may diffuse to the 
depletion region of an adjacent pixel. Photons of longer 
wavelength (e.g., red light) penetrate deeper into the 
photodiode. The carriers created by these photons are more 
likely to diffuse to neighboring pixels. Therefore, there will 
be a larger degree of cross-talk from red pixels to green 
pixels than other color combinations. The amount of cross-
talk will increase as the size of pixels is progressively 
reduced (e.g., less than 4µm x 4µm). This can lead to 
highly de-saturated (muted) images that require severe 
color corrections. Cross-talk will also reduce the sharpness 
of an image. In Ref. [4] a color correction method was 
developed which takes into account the color matching 
error and the noise error in processed images. The color 
error and the noise error levels can be balanced to produce 
an optimal image. This trade-off can be extremely 
important in digital camera systems where the 
sensor/system SNR levels can be very low (e.g., less than 
20). However, the color quality will suffer when the SNR 
levels become low. 

The color correction of pixel data is commonly done 
by using a 3x3 color correction matrix ([CC]) 
multiplication with the pixel color data. Higher order 
polynomial equations can produce lower errors in color-
matching than those achievable in 1st order equations (e.g. 
3x3 matrix), but add more computational complexity. A 
‘color matching optimized’ 3x3 color correction matrix 
[CC] can be determined using a target with known 

calibrated colors under known illumination and applying 
polynomial regression. Polynomial regression is based on 
the assumption that the correlation between color spaces 
can be approximated by a set of simultaneous equations 
(which is usually a good approximation). Sample points in 
the source color space are selected and their color 
specifications in the destination space are measured. A 3x3 
color correction matrix which links the source and 
destination color specifications can then be defined.5 The 
3x3 color correction matrix [CC] can be broken down into 
a 3x3 saturation matrix [Sat] and a 3x3 white balance 
matrix [WB] that only has terms on its main diagonal: 

 (1) 

In order to maintain the white balance of an image, the 
saturation matrix [Sat] must have the coefficients of each 
of its rows sum to one. Thus, as the magnitude of the off-
diagonal saturation terms increase, the on-diagonal terms 
of [Sat] must also increase. This means that for sensors that 
have more cross-talk, the [Sat] coefficients will have larger 
values, and the SNR of the processed images will decrease.  

Noise Reduction Methods 

The first pixel noise reduction method described attempts 
to take advantage of the DCT operation that is performed 
in camera systems which store images in JPEG format. If 
much of the image processing is done in firmware, then we 
have the opportunity to modify the processing to 
incorporate minor changes that may result in minimal 
increases in computational time. In fact decreases in 
processing time and computational complexity can occur 
due to a reduction in the number of mathematical 
operations performed. Assume that the image process chain 
can be represented by the simplified set of operations 
shown below: 
 

 

Figure 2. Simplified Image Processing Operation Path 

 
 
The DCT and color correction transforms are both 

linear, thus permutations between these operations can be 
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performed.6 Then we can modify the image process path to 
become: 

 

Figure 3. Modified Image Processing Operation Path 

 
When the DCT operation is performed, 8 by 8 pixel 

blocks are formed. The 64 terms in the blocks represent 
DC to high frequency terms. We can then apply the full 
3x3 color correction in the DCT domain to the low 
frequency terms only ([Low Frequency Saturation 
Correction]). All of the pixels prior to the DCT have had a 
white balance applied to them. The color space conversion 
[YCrCb Conversion] is then performed after the saturation 
operation, with the standard processing following. This 
methodology was implemented by applying the full 3x3 
color correction (white balance followed by saturation 
correction) to three sets of coefficients within each 8x8 
block: the lowest frequency coefficient (DC term) only, the 
four lowest coefficients, and the 16 lowest coefficients. 
This corresponds to performing a full color correction to 
1/64, 1/16, and 1/4 of the image data, respectively. 
Furthermore, the selection of the coefficients that receive 
the full 3x3 color correction can be implemented real-time 
based upon the SNR of the captured image. One draw back 
of this method is that 8x8 hue blocking artifacts can occur. 
This is due to the low frequency color values of an 8x8 
pixel block being used for all of the pixels within that 
block. A filter that slides across the image does not have 
this problem. However, methods have been developed 
which can remove this blocking artifact.7 

The next method considered is the DWT color 
processing method. It is similar to the DCT method in that 
most of the color correction process is moved from the 
‘image processing space’ to the DWT space (refer to Fig. 
4). Wavelet transform methods exploit redundancies in 
scale to reduce information stored in the wavelet transform 
domain.8 The DWT is used in JPEG2000, so future camera 
systems may have the DWT in the image process path. 
When the DWT step is already a part of the image 
processing, little or no additional cost is incurred. As with 
the DCT method, decreases in processing time and 
computational complexity can occur since fewer 
mathematical operations are performed. The overall 
complexity of the algorithm (processing cost) can be 
controlled by selecting the number of subbands 
(resolutions) that have the higher complexity color 
corrections (e.g., 3x3 color correction matrix 
multiplication) applied to them. Refer to Fig. 4 to see how 

the image is partitioned in coefficient frequency subbands. 
Other partitioning schemes may be used. A quarter of this 
2-D transform has its coefficients from a high-pass filter 
(H) operating on the image’s rows followed by a high-pass 
filter operating on the image’s columns. This block of 
coefficients is indicated by HH1 in the lower right-hand 
corner of Fig. 4. Another quarter of the 2-D transform has 
its coefficients from a low-pass filter (L) operating on the 
image’s rows followed by a high-pass filter operating on 
the image’s columns, and is indicated by LH1 in the upper 
right-hand corner of Fig. 4. The upper left-hand corner of 
the 2-D transform is subdivided into smaller blocks. The 
wavelet transform is performed on successively smaller 
number of coefficients until the final coefficient in the 
upper left-hand corner has only low-pass operations 
performed on it. The higher frequency resolutions will only 
be white balance processed, which will result in reduced 
noise compared to the standard 3x3 color correction 
method. The wavelet and color correction transforms are 
both linear, thus we can use permutations between these 
operations.  

 

Figure 4. 2-D Wavelet Transform 

 
A study in Ref. [9] used human psycho-visual 

appreciation to weigh the importance of the DWT 
coefficient blocks. In Ref. [9], the importance of each 
wavelet block in terms of the overall reconstructed image 
quality was ranked. Based upon that study, the selection of 
the resolution planes that have their color correction 
matrices simplified (e.g., reduced to a white balance only) 
as the image SNR decreases is ordered as follows:  

HH1, LH1, HL1, HH2, LH2, HL2, HH3, LH3, HL3, LL3 

In the DWT processing, I recursively applied a 9 tap 
low pass filter and a 7 tap high pass filter (9-7 
Daubechies/Antonini filters).10 Three sets of subbands that 
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received the full 3x3 saturation correction after white 
balancing were implemented: the lowest frequency 
subband (LL3) only, the lowest four frequency subbands 
(LL3, LH3, HL3, HH3), and the lowest seven frequency 
subbands (LL3, LH3, HL3, HH3, HH2, LH2, and HL2). As 
with the DCT corrections used, this corresponds to 
performing a full color correction to 1/64, 1/16, and 1/4 of 
the image data, respectively. Omitting the full 3x3 color 
correction of the high frequency components can result in 
too large a loss of edge detail. In such cases, the white 
balanced high frequency components can be amplified 
(without amplifying and summing uncorrelated noise) to 
give better edge detail. 

The last method explored uses a simple low-pass/high-
pass sliding filter (LPF/HPF). It is in fact a simplification 
of the DWT method. The low pass data is obtained by 
summing the RGB values of the local area of color-
interpolated pixels and obtaining the average value. By 
selecting an area which has a number of pixels that is a 
factor of 2, it can be implemented without the use of any 
multiplications; simply sum and shift or shift during 
accumulation. Line buffers would be needed to store the 
image data for filtering. The high pass data is then simply 
the difference between the pixel data and the low pass 
value. Thus, in this process the pixel data is first color 
interpolated and then white balanced. The pixels then have 
the saturation correction applied to the low-pass filtered 
data and then the low and high frequency components are 
summed. The high frequency components can be amplified 
(without amplifying uncorrelated noise) if better edge 
detail is desired. The simple equations for these operations 
are shown below: 

RGB' = Factor*[WB][RGB-RGBave] + [Sat][WB][RGBave], or  
RGB' = Factor*[WB][RGB] + 

([Sat] –Factor*[I])[WB][RGBave],  (2) 

where: 

RGBaveij = Average(RGBk-i,l-j) k,l = -(n-1),…,0,…,n     (3) 
 
and ‘Factor’ is a scalar term used to amplify the high 
frequency information, ‘RGB’ is the red, green or blue 
pixel data, and [I] is the identity matrix. In order to match 
the scale of the DWT and DCT methods implemented, the 
LPF/HPF method was performed using local pixel area 
window sizes of 8x8, 4x4, and 2x2 pixels. This corresponds 
to applying a full color correction to 1/64, 1/16, and 1/4 of 
the image data, respectively. 

Performance Criteria 

The performance of each method to reduce noise in the 
color processing was calculated and compared with that of 
standard processing. Specifically, the color corrected 
accuracy, signal-to-noise ratio, and sharpness of processed 
images were compared. The test image used for the 
performance measurements included a MacBeth Color 
Checker chart and an ISO Resolution Chart for Electronic 

Still Cameras. The image was taken using an f/2.8 lens 
with 100 lux lighting at an exposure time of 48ms, which 
corresponds to 5.7 EV (photometric exposure value). The 
sensor used was a CMOS imager with 4µm x 4µm pixels. 
This test set-up provides a good subject to observe the 
color correction-image sharpness-noise trade offs. 

The image of a MacBeth color checker chart was used 
for the color error and SNR calculations. All 24 color 
squares were used for color matching error calculations. 
The total error in color matching was measured by using 
the equation: 

  24 
Color Error =  Σ [ sqrt(Red_error(i)2 + Green_error(i)2  
  i=1 + Blue_error(i)2) ] (4) 

where: 

Red_error(i) = Weighting_Factor(i)*(Red MacBeth Square
 Ideal Value – Imager Red Corrected Value ) (5) 

Green_error(i) and Blue_error(i) were calculated in 
the same manner and all the weighting factors were set to 1 
for this study. The color error measured was then used to 
calculate the normalized color accuracy. The colors errors 
from applying a simple white balance matrix (WB Color 
Error) and the optimized 3x3 color correction matrix (CC 
Color Error) are used in the following equation to produce 
the normalized color accuracy:  

Normalized Color Accuracy = 
(WB Color Error - Measured Color Error) /   
(WB Color Error - CC Color Error) (6)  

A normalized color accuracy of 100% corresponds to 
the best 3x3 color correction possible, and a value of 0% 
corresponds to a simple white balance alone. 

The degree of noise in the processed images was 
measured by looking at the .44 optical density gray square 
of the MacBeth chart (square number 22). The values of 
the red, green, and blue pixels were used to calculate the 
luminance values per pixel. The ratio of the mean of the 
pixel luminance values to the standard deviation of the 
pixel luminance values was used for the SNR parameter.  

The effects of the noise reduction color processing 
methods on the sharpness of an image were measured by 
calculating the modulation transfer function (MTF) when 
each method was used. The MTF was found at ½ Nyquist 
using the equation from Ref. [11]: 

MTF = (SMAX - SMIN) / (SMAX + SMIN)    (7)  

where SMAX and SMIN are the maximum and minimum 
modulation levels after processing, respectively. Clipping 
of the data at the high and low ends was avoided.  

The processing of the images was minimized in order 
to isolate the effects of the color processing algorithms. 
Only DC black level offset, simplified color filter pattern 
interpolation (Bayer), and the specialized color corrections 
were performed. 
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Discussion of Results 

The normalized color accuracy (Eq. (6)), SNR, and MTF 
values at ½ Nyquist frequency (Eq. (7)) are shown in the 
plots of Figures 5, 6, and 7 for the DWT, DCT, and 
LPF/HPF methods. The standard color processing method 
of applying the color correction in the spatial domain is 
also shown for comparison. Three data points are used for 
the standard processing method: full optimal 3x3 color 
correction [CC] matrix, 50% saturation correction (the 
[Sat] matrix’s off-diagonal terms are reduced by 50%), and 
white balance [WB] correction only. The DWT, DCT, and 
LPF/HPF methods each have data points for 3 color 
correction resolutions. These resolutions correspond to 
applying a full color correction to 1/64, 1/16, and 1/4 of the 
image data for each of the proposed methods. The plots of 
SNR and MTF versus normalized color accuracy (Figs. 5 
and 6) show that the proposed color correction methods 
produce color accuracy that are as good as an optimal 3x3 
standard correction and are fairly independent of SNR and 
MTF. In contrast, the standard method of color correction 
results in SNR decreasing with color accuracy and MTF 
increasing with color accuracy. Color accuracy of the 
MacBeth color checker measurements depend only on the 
low frequency sensor data, thus the three non-standard 
color correction methods are designed to produce good 
results for this test. This also matches the way humans 
perceive color. As more higher frequency data is used in 
the calculations, the SNR will decrease and the MTF will 
increase. The SNR decreases due to amplification of pixel 
uncorrelated noise. The MTF increases due to correction of 
signal lost to adjacent pixels through cross-talk. The plot of 
SNR versus MTF in Fig. 7 shows that all of the color 
correction methods follow approximately the same trade-
off between SNR and MTF. 

The three proposed color correction methods offer the 
ability to select the optimal SNR-MTF trade-off while 
always providing excellent low frequency color accuracy. 
The standard color correction method cannot achieve this 
since it operates in the spatial domain. As the signal 
decreases or as the cross-talk increases, the selection of the 
optimal SNR-MTF trade-off becomes more critical in 
determining the overall image quality. 

Samples from a low light (low SNR) still life image 
are provided in Figs. 8 and 9 to show the performance of 
the color corrections. All three methods can result in some 
‘softening’ of the image due to a reduction in the amount 
of cross-talk correction applied. However, the hue random 
noise is attenuated. The strong high frequency edges are 
also maintained. We can also amplify the high pass portion 
of the data in order to improve our detail information. It is 
seen that the DCT method introduces some undesirable 8x8 
hue blockiness, which could be eliminated with further 
processing. Another benefit of this color correction 
methodology is the reduction of color filter pattern 
interpolation aliasing. In areas that exhibit a sharp 
transition from light to dark, a zippering effect of 
alternating hue can occur along the edge. Simplistic CFA 

interpolation algorithms applied to the high frequency data 
can produce this effect. When the standard 3x3 color 
enhancement is then applied to the color interpolated data, 
this effect is amplified. Applying the majority of the color 
enhancement to the low frequency image data terms only 
and applying a white balance to the high frequency image 
data terms attenuate this effect. 

 

 
Figure 5. SNR versus Normalized Color Accuracy 

 
Figure 6. MTF versus Normalized Color Accuracy 

 
Figure 7. SNR versus MTF 
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Figure 8. Flower Image Detail. Top: Standard 3x3 [Sat] correction, Bottom: DWT with 3x3 [Sat] correction applied to the lowest four 
frequency subbands only (LL3, LH3, HL3, HH3). 
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Figure 9. Flower Image Detail. Top: DCT with 3x3 [Sat] correction applied the 16 lowest frequency coefficients, Bottom: LPF/HPF 
with 3x3 [Sat] correction applied to 4x4 averaged data. 
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Conclusions 

Three separate methods to reduce the amplification of 
random noise in the color processing of imager data have 
been described. These three methods of color correction 
exploit the fact that the human visual system is most 
sensitive to color errors in lower spatial frequencies than in 
higher spatial frequencies. The three color correction 
methods utilized transforms to process colors in the fre-
quency domain, namely: the discrete cosine transformation 
(DCT), the discrete wavelet transformation (DWT), and a 
simple low pass/high pass filter. A summary of the results 
are provided in Figs. 5, 6, and 7, with a set of sample 
processed images shown in Figs. 8 and 9. These results 
showed that the three methods of color correction produce 
low frequency color accuracy that are as good as applying 
an optimal 3x3 color correction matrix. The proposed color 
correction methods allow the control of the SNR-MTF 
trade-off. 
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